MICROCHIP

AN1334

Techniques for Robust Touch Sensing Design

Author: Burke Davison
Microchip Technology Inc.

INTRODUCTION

The purpose of this application note is to describe the
best design practices when developing capacitive
touch applications in noisy environments. This
application note will begin by defining the problems
caused by noise, and explain how that noise typically
affects systems. Hardware guidelines will then be
provided to help maximize the natural signal-to-noise
ratio (SNR) of the application. Software techniques are
then covered to describe some of the common
methods used to filter a sensor’s signal to increase the
SNR further, and then to make a decoding decision
based on the behavior of the capacitive sensor.

The hardware design topics that will be covered are:
Selecting a sensor size

Determining the sensors’ separation

Covering material thickness

Using ground planes to your advantage
Designing the sensors’ layout

Selecting an adhesive

Using series resistance on sensors

Choosing VDD to maximize noise immunity

® N Ok wN =

mTouch™ sensing solution systems have passed
industry test standards in conducted noise, radiated
noise, and radiated susceptibility. This application note
describes the important aspects of capacitive touch
design which, when coupled with good PCB
techniques, will allow these systems to continue
performing in these extreme testing conditions.

For information on the basics of capacitive touch sens-
ing and other more advanced topics, visit the Microchip
web site at http://www.microchip.com/mTouch.

Basic Capacitive Touch Review

Capacitive sensors are areas on a PCB that have been
filled with copper and then connected back to the PIC®
device using a trace. The PIC device will then measure
the sensor in some manner that allows it to notice small
shifts in capacitance. The capacitance is continuously
read in software and when a change occurs, the
system will register a press on that sensor.

There are two main methods for detecting a shift in
capacitance using a PIC device. The first is to use a
voltage measurement where the system places a
specific known voltage onto the sensor and looks for a
shift in the amount of voltage on the sensor. This
includes methods such as Microchip’s Charge Time
Measurement Unit (CTMU) and the Capacitive Voltage
Divider (CVD). The alternative is to measure the sensor
using a frequency approach such as the Capacitive
Sensing Module (CSM), which uses a fixed current
source and a comparator to create a circuit that
changes its frequency based on the capacitance seen
at the sensor. The waveforms for all three scanning
methods can be found below in Figure 1.

FIGURE 1: mTOUCH™ SENSING
ACQUISITION METHODS’
WAVEFORMS

Charge Time Measurement Unit /‘I /-l
(CTMU)
Capacitive Voltage Divider I ‘—l I ‘—I
(CVD)
Capacitive Sensing Module /\/\/\

(csm)

This application note will focus on the hardware design
of the system and the sections of firmware not involved
in signal acquisition. With only a few exceptions, the
signal processing portion of the firmware will be
identical regardless of the sensing method chosen.

Noise Immunity vs. Low Power

When developing a capacitive touch system, it is
important to know what your main goal should be from
the very start of product development. For the majority
of applications, how the system is powered will answer
this question.

For line-powered systems, conducted noise immunity
is the main concern. Voltage-based acquisition
methods should be used.

For battery-powered systems, low power is the main
concern. Both voltage-based and frequency-based
methods can be implemented in these applications.

© 2010 Microchip Technology Inc.

DS01334A-page 1

AN1334

It is also possible that some systems may overlap
between these two regions. A cell phone that has the
option of being powered through a USB cable is one
example. The majority of the time, it would be
concerned with low power; however, it needs to be
careful of conducted noise when being powered
through the main line. For this reason, only
voltage-based acquisition methods should be used in
these systems. While noise immunity and low power
are not mutually exclusive, focusing on one will require
that design trade-offs be made to the other. For
example, implementing a slew rate limiter filter to
reduce susceptibility to conducted noise will require
increasing the sample rate of the system which will
increase the overall power consumption. Lowering VDD
is an excellent idea in low-power applications, but
doing so will also decrease your noise immunity (see
Section “Hardware Design Consideration #8”).
This application note focuses on decreasing noise
susceptibility and treats low power as a secondary
goal. If low power is the main goal of the application,
visit www.microchip.com/XLP for more technical
details.

EFFECTS OF NOISE ON CAPACITIVE
TOUCH SENSORS

Mechanical Buttons vs. Capacitive
Sensors

Before considering how to develop a robust capacitive
touch application, it is important to understand the
fundamental reason why noise is a concern. When
using a mechanical button, the microcontroller’s port
circuitry decides whether the switch’s pin is being
pulled high or low and provides a single-bit digital result
to the user. This result is then debounced to adjust for
ringing, and the state of the button is based on the state
of the debounce variable.

Capacitive touch sensor applications, however, are
analog. The first clear difference is the need to
manually perform the reading process. When using a
mechanical switch, the microcontroller is able to read
the pin using its internal hardware logic. For capacitive
touch applications, separate hardware modules will
need to be used to manipulate the sensor line. Whether
it is using a voltage-based measurement or a
frequency-based measurement, the analog result will
be provided in the form of an integer value. This value
is then typically filtered using different digital signal
processing techniques to amplify the signal and
attenuate the noise. The filter value is then sent
through some form of debounce algorithm and a more
complex decoding process. An extra layer of
complexity is also added when the system is designed
to perform in a closed loop manner, adjusting its
behavior based on the sensor’s current state.

The capacitive touch software process can be
simplified into three distinct phases:

1. Acquisition
Using a voltage-based or frequency-based
measurement technique to obtain a sample from
the capacitive touch sensor.

2. Filtering
Manipulating the incoming sensor samples to
increase the effective SNR of the system by
attenuating the noise.

3. Decodin
Determining whether a sensor is pressed or
released based on the current value of the
sensor samples and the sensor’s previous
behavior.

Figure 2(a) illustrates the difference between push
buttons and capacitive touch sensors, and labels the
three main software stages of a capacitive touch
system.

FIGURE 2(A): MECHANICAL BUTTON VS.
CAPACITIVE TOUCH
SENSOR SOFTWARE
PROCESS

Capacitive Touch

Push Buttons

Perform
Acquisition
and
Read
Sample

v
Filtering/
,’ Averaging

’
Y , v

Debounce

uonisinboy

Read
Port

(1eyB1q)

Bupiey4

Debounce
and

\ Advanced

« Decoding

Buipoosag

The difference between digital and analog results can
also be seen in Figure 2(b). The push button is always
in one of three states: high, low, or ringing from a recent
transition. The capacitive touch sensor does not
perform in the same way due to its analog result.
Instead, it is able to drift and move. When noise is
injected on the sensor, it affects the quality of the
readings, not just the time required to make a state
transition.

DS01334A-page 2

© 2010 Microchip Technology Inc.

AN1334

FIGURE 2(B): MECHANICAL BUTTON VS. CAPACITIVE TOUCH SENSOR SIGNAL NOISE

i
.

Conducted and Radiated Noise

Conducted and radiated noise are the two main
classifications of injected noise that can create
instability in capacitive touch systems.

Conducted noise is caused in systems that are
powered externally from the device. This can include
systems powered off the main-line power,
desktop-powered USB devices, or any other situation
that may mean the user is not sharing a ground with the
device.

Radiated noise is a common challenge across all
capacitive touch systems. Since the capacitive touch
sensor is a high-impedance input when being scanned,
it essentially performs as a high-frequency antenna.
Thus, electronic devices radiating electro-magnetic
fields near the capacitive touch system will cause the
readings to be affected. This can include cell phones,
high-power communication lines, and fluorescent lights
to name a few.

There are two main reasons why these two types of
noise show up:

1. When a user presses on a capacitive touch
sensor, he/she is becoming part of the system,
so, if the user and the system are on different
ground references, the system will interpret the
user as an injected AC signal on the sensor.

2. Analog readings are susceptible to outside
forces pushing them slightly in one direction or
the other. The digital result of a mechanical
switch is either high or low.

This application note will describe the different system
design techniques that are recommended to overcome
these two noise types. In addition to these guidelines,
designers should be aware of the future working
environment of the application and ensure there are no
excessively noisy electronics nearby that may interfere
with the system.

Capacitive Touch Sensor Noise Behavior

Injecting noise on a capacitive touch sensor will cause
the system to become more unstable. Voltage-based
mTouch sensing solution reading methods such as

CTMU and CVD will be affected differently than
frequency-based reading methods such as CSM. In
voltage-based systems, the voltage of the sensor at a
specific point in time is what determines the integer
value of the reading. In frequency-based systems, the
effect on the readings will vary based on the frequency
of the injected noise. For this reason, voltage-based
acquisition systems should be used on any system
concerned with conducted or radiated noise immunity.

In voltage-based systems, injected noise can cause a
positive or negative offset away from the natural
sample value. If the sampling rate falls on a harmonic
of the injected noise, resonance can occur. When this
happens, the samples are falling on the peaks or
valleys of the injected noise. An example of this
behavior can be seen in Figure 3. When sampling at
one of these harmonics, the readings may all fall on the
peaks of the noise or somewhere in the middle based
on the starting time of the acquisition. Because of this,
multiple readings at the same frequency will show a
large amount of noise. This can be seen in Figure 4
where some of the noise frequencies are harmonics of
the sampling rate and others are not.

FIGURE 3: VOLTAGE-BASED
HARMONIC ACQUISITION
EXAMPLE

~+~Normal Sensor Signal + Injected Noise

"*Normal Sensor Signal&" Sample

“Real World” Example

N

ADC Samples
™

© 2010 Microchip Technology Inc.

DS01334A-page 3

AN1334

FIGURE 4:

EXAMPLE VOLTAGE-BASED-ACQUISITION NOISE BEHAVIOR

777 7~ Resonant Frequencies |

Raw Hardware Module Output

7 Frequency of Injected Noise %
(3 .

i Conducted / Radiated %

"% £

This can be seen in Figure 4, where some of the noise
frequencies are harmonics of the sampling rate and
others are not.

Given the knowledge of how the system will behave,
some important hardware considerations that make
development a faster and simpler process can now be
defined.

Signal-to-Noise Ratio

First, in order to understand how hardware and
software changes are affecting the system, it is
necessary to have a way of measuring the signal’'s
current performance. Sensitivity, or the amount that the
system shifts, is not a good enough measure alone to
define if a system is stable. For example, in a system
where the average sensor output value is 20000 and a
shift of 2000 is reached, you could simply subtract
18000 from each reading and claim a 100%, 2000
count shift was achieved. In reality, however, the shift or
“signal” must be compared with the amount of noise. If
noise was causing the sensor to drift by 1000 counts at
any point in time, the system is in trouble.

One of the easiest ways to determine how stable a
system is, or how much the system is affected by noise,
is to look at its Signal-to-Noise Ratio (SNR). Just as it
sounds, this is a way of measuring how strong the
signal is when compared to unwanted disturbances of
noise.

For the purpose of this application note, the SNR
formula being used is:

EQUATION 1: SIGNAL-TO-NOISE RATIO
Hy—Hp
Sy

SNR =

Where:
My is the unpressed average
up s the pressed average

o is the unpressed standard deviation

The numerator of the equation is the amount that the
system will shift when pressed. The denominator is a
measure of how much the noise is able to affect the
readings. Using these as a ratio, a single number can
be used to describe the quality of the sensor’s signal by
answering the question: How much shift are you
looking for compared to the amount of noise you are
trying to avoid? An example SNR calculation is shown
in Figure 5.

FIGURE 5: EXAMPLE SNR
CALCULATION

- b, = 1104

. BN - 1 Hem 916

SNR = (uy - Hp) /oy
SNR = (1104 - 916) / 9.45
SNR™ 19

There are many other ways to calculate the SNR of a
system. The important thing is to choose a method that
provides consistent numbers across multiple measure-
ments so informed decisions can be made about which
of the changes made are good and which are bad.

DS01334A-page 4

© 2010 Microchip Technology Inc.

AN1334

For reference, Figure 6 is provided to show an example
of what a signal-to-noise ratio of 1 would look like using
Equation 1. Note that since the standard deviation of
the noise and not the peak-to-peak value is being used,
an SNR of 1 leaves no safe place to put a threshold. To
be able to place a fixed threshold on the system so that
the pressed section plus its noise is completely
separated from the unpressed section plus its noise, a
system with an SNR of at least 3.5 is needed.
FIGURE 6: EXAMPLE: SIGNAL-TO-NOISE
RATIO=1.0

2000

1800

::: ‘\W I “ ’, -“w' l},[HIWNMMMWW‘ "1|" w ‘w” il
T T e T TN
5 b |

800

Signal = 200 Noisep, p, = 700 g, = 200

600

HARDWARE DESIGN

The hardware design of a capacitive touch application
is crucial to the system’s overall success. The
decisions made in this step of the process will
determine how difficult it is to get a working, robust
application. If the hardware design guidelines are
followed, it will be significantly easier and faster to pass
industry noise standards. Likewise, not following the
guidelines will make success much more difficult and in
some cases impossible. Keep this in mind while
deciding which of these guidelines to follow in your
future applications.

The Basic Capacitance Equation

The most important thing about hardware design is to
remember that the basic capacitance equation, shown
in Equation 2, defines the relationship between
hardware design decisions and the resulting sensitivity
of the system.

EQUATION 2: CAPACITANCE /
SENSITIVITY

C = Eriog

Where:

C is the capacitance, or sensitivity

g, is the relative permittivity of the cover
gq is the permittivity of free space

A is the overlapping area

d is the distance

For example, if the distance between the finger and the
sensor is decreased by half, the sensitivity will double.
If the area of the sensor is doubled (assuming it is still
smaller than the area of a finger’'s press) then the
sensitivity will also double.

Another important characteristic of capacitive touch
sensors is the existence of parasitic capacitance, Cp.
Equation 3 explains how Cp can affect a system’s
sensitivity. You are only able to take a measurement of
the total capacitance on the sensor, Ctgot, so the
stronger the effect of Cp the less you may be able to
see Cg, the change in capacitance due to a finger. This
relationship is shown in Figure 7.

EQUATION 3: TOTAL CAPACITANCE

Cror= Cp+Cp

Where:
Crot is the total capacitance
Cp is the parasitic capacitance

Cg s the finger’s capacitance

FIGURE 7: DIAGRAM SHOWING C¢

AND Cp

© 2010 Microchip Technology Inc.

DS01334A-page 5

AN1334

Equation 2 and Equation 3 will be the basis of the
hardware design guidelines for capacitive touch. The
equations are simply physics. The guidelines are
recommendations that will attempt to maximize your
system’s base SNR and should be followed whenever
possible. In some cases, an application may require
that some of the guidelines not be followed. For
example, a system might have size constraints or may
require a thick covering material to protect it from
damage. If this is the case, extra care should be taken
to ensure a quality signal-to-noise ratio.

Hardware Design Consideration #1

SELECTING A SENSOR SIZE

Best Option: The sensor size should be the same as an
average user’s finger press (15x15 mm or 0.6x0.6
inch).

Option 2: Design sensors to be smaller than optimal.
Effects:

» Overlapping area, ‘A’ in Equation 2, is limited
which reduces the maximum sensitivity.

* Adequate sensor separation will become
more important to minimize the amount of
sensor crosstalk.

* Use a thin cover to gain some extra
sensitivity.

Option 3: Design sensors to be larger than optimal.
Effects:

* Parasitic capacitance, ‘Cp’ in Equation 3, can
increase because of the increased proximity
to ground which reduces sensitivity.

» Conducted noise disturbance is increased.

* Press shifts will vary by larger degrees
because small fingers will cause less of a
shift than large fingers due to less
overlapping area, ‘A’ in Equation 2.

* Proximity sensing capability is increased.

In Equation 2, ‘A’ is defined as the overlapping area.
For capacitive touch applications, this means that you
are limited by the smallest capacitive plate. If the
sensor is smaller than a finger’s press, the sensor’s
area is the limiting factor. If the sensor is larger than a
finger’s press, the finger is now the limiting factor.

You cannot change the user’s finger size, but you can
adjust the sensor size to maximize the sensitivity. The
larger the sensor, the more parasitic capacitance will be
able to lower the sensitivity and the more conducted
noise will be injected into the system when a user
presses. The smaller the sensor, the greater the
chance that it is the limiting factor on sensitivity instead
of the user’s finger size. For this reason, the ideal
sensor size is about the area of a finger press.

Some exceptions to this rule do exist. Thick covers will
lower the sensitivity of a sensor drastically, so slightly
larger sensors may be warranted. There are also
situations where the user’s finger is not what is trying to
be detected. For instance, if a proximity sensor is being
made and you are only interested in knowing when a
user’s hand is near the sensor, then a much larger
sensor could be used.

Hardware Design Consideration #2

DETERMINING THE SENSORS’ SEPARATION

Best Option: Separate sensors as much as possible.
Ideal minimum separation is 2-3 times the cover’s
thickness.

Effects:

» The distance, ‘d’ in Equation 2, between the
sensors is kept high compared to the
distance between the finger and the sensor,
which results in reduced sensor crosstalk.

* Parasitic capacitance, ‘Cp’ in Equation 3, is
kept low compared to the finger’s
capacitance, ‘Cg’, which results in increased
sensitivity.

Option 2: Create slotted air gaps in the cover.
Effects:

» The relative permittivity, ‘s’ in Equation 2,
between the sensors is lowered to “1”, which
results in decreased coupling between the
sensors which decreases sensor crosstalk.

Option 3: Use ground traces between the sensors.
Effects:

» The distance, ‘d’ in Equation 2, between the
sensor and ground is lowered, which
increases the amount of coupling between
sensor and ground, which results in a slight
shielding effect and reduces the crosstalk
between sensors separated by the ground.

* However, this increases the parasitic
capacitance, ‘Cp’ in Equation 3, which will
reduce sensitivity.

Crosstalk can become a challenge in capacitive touch
applications if covers are too thick or sensors are too
closely placed together. Crosstalk is the unwanted shift
of a different sensor from the one you are intending to
press. If crosstalk is a problem in an application, the
software must compare the two sensors and determine
which sensor is “more pressed’. This adds an extra
step to the decoding process, increases the likelihood
of error and, (depending on how it is implemented) can
limit your system to one touch at a time. To include
multi-touch in a “Most Pressed” system, the algorithm
can be changed to be a “two most pressed”
configuration or one of the sensors that will be pressed
can be physically separated from the others similar to a

DS01334A-page 6

© 2010 Microchip Technology Inc.

AN1334

computer’s shift key. Following this guideline will allow
you to avoid implementing a system that must compare
each sensor with every other sensor.

Figure 8(a) shows how a finger’s press can affect the
sensors located around the target sensor. By
separating the sensors by 2-3 times the cover’s
thickness, the strength of the finger-to-sensor coupling
is limited to a low and manageable amount. An
alternative way of thinking about this relationship is to
focus on the distance variable, ‘d’, in Equation 2. If the

FIGURE 8(A):

sensors are separated by the same amount that the
cover is thick, a press on one sensor will be like
pressing the other sensor through a cover that is 1.4
times thicker. By separating the sensors as shown in
Figure 8(a) by 2.5 times the covers thickness, that
crosstalk press is now equivalent to pressing through a
cover that is 2.7 times the cover’s thickness. This
results in a much more decreased crosstalk response
from the system which, in turn, increases your effective
signal.

DIAGRAM OF FINGER-TO-SENSOR COUPLING

Sensor-to-sensor coupling is the other form of crosstalk
that can negatively impact a design. Figure 8(b) shows
how field lines will radiate from a capacitive sensor. The

FIGURE 8(B):

CAPACITIVE SENSOR FIELD LINES

ability of those field lines to affect a neighboring sensor
is based on the distance it travels and the material it is
travelling through.

\ /

Yo g2

Nt P

TR L
1q

S

- NI

SN
ST
S~ S AR
’ RN UL LT R /SRR N

i by NN iy

N T L

If the field lines are able to propagate only through the
cover as shown in Figure 8(c), the effect will be strong.
If the field lines must go through the cover, exit into free
space, and then return through the cover in order to
affect a neighboring sensor. The amount of crosstalk
will be significantly reduced. This is shown in the figure
as the difference between the strong and weak
coupling field lines. By following the first hardware
design guideline, the field lines will be forced to travel

through free space to reach a neighboring sensor and
so the crosstalk caused by sensor-to-sensor coupling
will be insignificant.

© 2010 Microchip Technology Inc.

DS01334A-page 7

AN1334

FIGURE 8(C):

DIAGRAM OF FIELD LINES SHOWING SENSOR-TO-SENSOR CROSSTALK

Alternatively, air gaps could be placed in the cover or
PCB that will require the field lines to travel through free
space. Figure 8(d) illustrates this possibility. Notice
how the crosstalk path now has a very small capacitor
in series with the normal parasitic capacitances. This

FIGURE 8(D):

small capacitor will dominate the others and will result
in an overall crosstalk shift that is very low. The larger
the air gap, the smaller the capacitor, and the better this
method will perform.

DIAGRAM OF CROSSTALK IN A SLOTTED COVER SYSTEM

AERT

Smallest capacitance
dominates in a series

,_\\

~ Ground
\‘< ol

Intended Capacitance Shift

"T"

P =G =G

- == Crosstalk Path :
—— Intended Path

Analog
Ground

=
=
-
1
Sensorc,oﬁﬁ,aT F’\’AICEZ® Sensor, .y
g ==

=

Finally, another option is to limit the sensitivity of the
sensor by using nearby ground traces to block the field
lines. Before using this technique, review Section
“Hardware Design Consideration #5” to understand
the recommended use of ground near sensors.
Reducing the sensitivity of a system should not be a
design decision that is made lightly and should only be
used when the other possibilites have been
exhausted.

By following this hardware design guideline, your
designs will have reduced finger-to-sensor coupling
and sensor-to-sensor coupling. This will result in a
system that sees very little crosstalk which will allow the
response time to speed up due to decreased
processing overhead and the reliability of the system
will increase as the sensors’ signals become more
immune to these negative effects.

DS01334A-page 8

© 2010 Microchip Technology Inc.

AN1334

Hardware Design Consideration #3

COVERING MATERIAL THICKNESS

Best Option: Keep the cover as thin as possible.
Ideally, given 15x15 mm sensors, the
cover thickness should not exceed 3
mm to maximize sensitivity.
See Figure 8(a)

Option 2: Cover is thicker than optimal, but the
sensors’ areas are increased to
provide additional sensitivity.

See Figure 8(b).

Option 3: Cover is thicker than optimal, but slots
in the covering material are created to
allow the sensor closer to the surface.
See Figure 8(b).

Option 4: Cover is thicker than optimal, but slots

in the covering material are created to
allow EMI gaskets or springs to bridge
the gap between the PCB and the
finger.

See Figure 8(b).
When covers are thicker than optimal:

* The distance, ‘d’ in Equation 2, between the
sensor and the user’s finger increases, which
causes the capacitance between the finger and
the sensor, ‘C¢’ in Equation 3, to decrease which
results in decreased sensitivity.

» Sensor-to-sensor crosstalk increases as shown in
Figure 8(c) due to additional sensor field lines
being able to travel through the high-permittivity
cover compared to the low-permittivity air.

The thickness of the covering material is very important
in affecting the sensitivity of capacitive touch systems.
Product designers will usually try to make the covering
material as thick as they can to increase the durability
of the end product, but thick covers will decrease the
system’s sensitivity extremely fast. Equation 2 helps to
explain why thick covers are such a concern for
capacitive touch applications. As the distance between
the PCB and the finger is increased, the expected
capacitance shift is decreased.

The relationship between cover thickness and
sensitivity can be seen in Figure 9. One thing to note
about the graph is the importance that the permittivity
of the material plays in defining the curves. A high
permittivity material will allow for a larger sensitivity
shift than an equally thick, but lower permittivity
material. High permittivity has the negative effect of
increasing the amount of crosstalk, however.
Figure 8(a) shows the effect that a finger can have on
a neighboring sensor. As the cover’'s permittivity
increases, so does this coupling.

FIGURE 9: RELATIONSHIP BETWEEN
COVER THICKNESS AND

SENSITIVITY

Sensitivity

Cover Thickness

If your application absolutely requires a thick covering
material for some reason, consider creating a slot in the
covering material where the sensor will be so the
sensor can be placed closer to the user’s finger.
Conductive foam products are also available that can
be used to fill the gap if the whole PCB cannot fit in the
slot. For more information about avoiding air gaps
between the PCB and the covering material, see
Section “Selecting an Adhesive”.

Hardware Design Consideration #4

USING GROUND PLANES TO YOUR
ADVANTAGE

Ground planes on the front of the PCB:

* Increases human-to-electrical-ground coupling,
reducing the effect of conducted noise.

* Increases parasitic capacitance, ‘Cp’in
Equation 3, when placed near sensors which
results in decreased sensitivity.

To minimize Cp and maximize conducted noise
reduction, a sensor-to-ground-plane separation of 1-2
times the cover thickness is suggested. Solid ground
planes are recommended to maximize the
human-to-electrical-ground coupling.

Ground planes on the back of the PCB:
» Shields sensors from radiated emissions coming
from behind the system.

* Increases parasitic capacitance, ‘Cp’ in
Equation 3, when placed near or behind sensors
which results in decreased sensitivity.

Unless shielding from a radiating source behind the
system is required, not placing ground planes directly
behind sensors is recommended to keep sensitivities
high. If shielding is required but sensitivity is a concern,
consider using a gridded ground plane.

© 2010 Microchip Technology Inc.

DS01334A-page 9

AN1334

You can adjust Cp in Equation 3 using these
techniques if you know that an increased amount of
noise will be present near a sensor. The negative
effects could become a challenge if the sensitivity of the
system is suffering, but many times this allows the
designer to anticipate problems and proactively correct
them. Solid and gridded ground planes can be
combined behind and to the sides of sensors. By using
these tools effectively, Cp can be designed to find a
balance between sensitivity and noise immunity.

FIGURE 10:

Figure 10 demonstrates three levels of noise immunity
that are possible using different grounding techniques
around the sensors.

It is hard to stress enough the importance of providing
your application with a sufficient forward-facing ground
plane if conducted noise will be a concern. For systems
that do not have a direct connection to earth ground, a
finger can appear to be a noise source injected directly
on top of a capacitive touch sensor. The extra ground
planes will allow the finger to couple better to the
floating ground, decreasing the amount of disturbance.

CROSS-SECTIONAL DIAGRAM OF GROUNDING TECHNIQUES TO DESIGN FOR

HIGH SENSITIVITY OR HIGH NOISE IMMUNITY

Lowest Sensitivity, Highest Conducted and Radiated Noise Immunity

ground plane

Solid Bottom-side ground Hane protects from radiated noise
originating from behind the system, but decreases sensitivity.

Medium Sensitivity, Highest Conducted Immunity, Medium Radiated Immunity

Sensor Via

77,

Hatched

Cover
ground plane

707 (SII SIS (Ll ki e e e e

Hatched plane protects from radiated noise,
but does not decrease sensitivity as much.

Highest Sensitivity, Low Conducted and Radiated Noise Immunity

PCB

Hardware Design Consideration #5

DESIGNING THE SENSORS’ LAYOUT
Best Option: Keep sensor traces thin and short.

There are two main reasons to follow this advice. First,
keeping trace lengths short will minimize Cp which will
increase the sensitivity of the system. Long traces are
also more susceptible to behaving like antennas which
will increase the noise floor of the application.
Communication lines should be kept away from sensor
traces if at all possible. If not, run them perpendicular to
the sensor traces to minimize their disturbance. You
can also guard them with ground traces to couple the
communication lines to ground instead of the more
sensitive capacitive sensor traces. Avoid running
capacitive sensor traces parallel with any
noise-causing lines and keep them separated from
ground and other capacitive sensor lines to reduce
parasitic capacitance.

Keep sensitivities high and noise low: Keep sensor
trace lengths short.

DS01334A-page 10

© 2010 Microchip Technology Inc.

AN1334

Hardware Design Consideration #6

SELECTING AN ADHESIVE
Best Option: Always use an appropriate adhesive.

Adhesive is used to secure the covering material to the
PCB and is another important element to a robust
capacitive touch system. Equation 2 will help to explain
the necessity of a good connection. The relative
permittivity of air is about 1. Plastics are usually
between 2 and 3. Glass is about 4. If you have air
separating the cover and PCB, your effective ¢, will be
significantly decreased. For example, a 1 mm air gap
will decrease your sensitivity to a half or a quarter of
what it was. Remember that when three capacitors are
in series, the smallest will dominate.

For systems using the metal over capacitive technique,
it is especially important that a good adhesive is found
for the application. Distances of tens of microns (10
micron = 0.4 mil) can make a significant difference in
these designs. Talking to a representative from 3M or
another adhesives manufacturer is recommended to
ensure your choice is the best for your custom
application.

There are several other important factors to keep in
mind when choosing or working with a commercial
adhesive:

1. Keep the adhesive thin in order to keep your
sensitivity high. For most regular capacitive
touch systems, 2 mil (50 micron) is a good
thickness.

2. Always read the bonding instructions for the
adhesive. Some data sheets specify a required
amount of pressure, temperature, and time to
achieve a secure, lasting grip.

3. Check the temperature limitations of your
adhesive. In some environmental conditions,
the glue can fail which will lead to unpredictable
behavior from your capacitive touch application.

4. Be careful of air bubbles when applying the
adhesive. If there are bubbles in the glue, your
sensitivity will suffer the same as if you had an
air gap between the cover and the PCB.

5. Make sure the adhesive type matches well with
the covering material. Different adhesives are
made for low surface energy and high surface
energy plastics. Most adhesives will adhere to
glass and PCB with few problems.

Some example adhesives that may perform well are:
High Surface Enerqy Plastics:

Example: ABS or Polycarbonate (PC)
3M'’s Adhesive Transfer Tape 467MP

Low Surface Energy Plastics:

Example: Polypropylene (PP)
3M’s Adhesive Transfer Tape 9626
3M’s Adhesive Transfer Tape F-9752PC
3M'’s Adhesive Transfer Tape 9122
3M’s Optically Clear Adhesive (OCA):
8211, 8212, 8213, 8214, 8215
All of these will adhere to PCB and glass.

Hardware Design Consideration #7

USING SERIES RESISTANCE ON SENSORS

While not as mandatory as the other provided
guidelines, this simple step will stabilize the sensor
readings in both voltage-based and frequency-based
systems. A typical resistor value is 1 kQ, but the value
can range from 100Q to 10 kQ. Figure 11 demonstrates
the relative difference a series resistor can make during
an industry noise test.

Note: If using the CTMU acquisition method, do
not exceed the module’s maximum input
impedance of 2.5 kQ or the scan rate will
decrease.

FIGURE 11: EFFECT OF A SERIES
RESISTOR ON THE

STABILITY OF A SENSOR’S

READINGS
+1% —
2 No Sey; .
o —
z 1 kQ Series Resistor
14
-1% —
’% Frequency of Injected Noise %
fsé Conducted / Radiated %

Hardware Design Consideration #8

CHOOSING VbD TO MAXIMIZE NOISE
IMMUNITY

Best Option: Keep VDD as high as possible to maximize
noise immunity.

Although not ideal for low-power applications, high VDD
systems will perform better in conducted noise
environments than low VDD systems. This is due to the
fact that all capacitive touch systems will eventually be
overpowered by the injected noise as the voltage level
of the noise is increased. Making VDD a higher value
will require a higher voltage level of injected noise
before this happens.

© 2010 Microchip Technology Inc.

DS01334A-page 11

AN1334

In voltage-based acquisition systems, the behavior you
are attempting to delay is the reverse press
phenomenon. Figure 12 shows a regular sensor being
injected with noise of increasing voltage levels. The

FIGURE 12:

noise begins adding voltage to the reading which
eventually overpowers the normal capacitive sensing
behavior and causes a positive shift when pressed.

REVERSE SHIFT BEHAVIOR WHEN INJECTING CONDUCTED NOISE ON A

VOLTAGE-BASED ACQUISITION SYSTEM

The effect of a press is a o
positive shift. The reverse e | 4 Veus
in behavior is caused by 4
the injected noise voltage. | A
S
E £a
g o
! s %
s | ® =
D . 3 VRMS a3
! @
s | AT —
- , a3
e 5 '®
Zero-Cross-Over Voltage €= = = = = = = = = = = 2 0
The amount of voltage required to A () 3
cause a change in shift direction 5 -
for a capacitive sensor. 1 @, o
s] (g —
NOTE: If the system naturally shifts { 2 VRMS A o %
positively, then injecting high voitage |,.. | | ﬁ' <
noise will cause it fo shift in the - 2 0
negative direction. = g E’b
2«
e ®
The effect of a press |
e et : ¥
{(in this example) IS g !
normally a negative shift. I |

SOFTWARE TECHNIQUES

Consider Your System Requirements

Your system’s limitations are based on two main
factors. First, your hardware design decisions will result
in a base SNR for the application. If the base SNR is
high, the software will not need to filter the signal as
much and the detection process will be fast and easy.
If the base SNR is low, the software will need to heavily
filter the signal and the detection process will need to
go through more steps to make sure no false triggers
are registered. The second factor to determining your
limitations is the application’s performance
requirements. If the product must have a specific
response time or if there is a limited amount of memory
available, then some software techniques may not be
applicable.

For example, in gaming systems speed is the most
important requirement. Care should be taken when
choosing a software filtering technique that the
response time does not suffer significantly. The code

size should be kept small to allow for fast execution.
And the sampling rate of our system may need to be
increased.

When considering any of the techniques described in
this section, remember that all of them have a cost in
time, power, and memory usage. The benefits should
always be weighed against the costs.

Sampling Rates

One of the first decisions when creating capacitive
touch firmware is whether to trigger a new scan from
the main loop or from the Interrupt Service Routine. For
applications concerned with noise, the second
approach is recommended. Fixed-time sampling rates
are important to the correct operation of filters and
detection decisions should be based off a concept of
how long in real-world time a new behavior has been
measured. If the sample rate of the system is based on
a non-fixed interval like a function call from the main
loop, other applications in the system could change the
sampling rate. For example, a system that is actively
controlling a power supply’s output voltage will have
priority over mTouch sensing due to its special timing

DS01334A-page 12

© 2010 Microchip Technology Inc.

AN1334

requirements. If the power supply control application
does not allow mTouch sensing to regularly scan, the
system could miss a press or release.

The second decision that must be made is: What will
the fixed sampling rate be? This is largely dependant
on the acquisition method that has been chosen as well
as the specific requirements of the system.
Voltage-based acquisition methods scan often and
very quickly, while frequency-based acquisition
methods scan over a longer period of time at a slower
rate. Gaming systems that require a very fast response
time may scan over 100 times a second, while a
battery-powered proximity sensor may only scan three
times a second until it notices a user nearby. For many
systems concerned about noise, the sampling rate and
the decoding rate may be different. For example, a
system could scan a sensor once every 50 us,
continuously updating the filter, but only run the
decoding sequence every 10 ms. This can reduce the
amount of processing overhead while still allowing the
system to adjust constantly to the changing
environment.

FIGURE 13:

Software filters and the decoding algorithm will need to
be designed with the sampling rate of the sensors in
mind. If not, the filters will become too fast and suffer
from too little noise reduction or they will become too
slow and may cause the signal to be dampened or
slowed. Decoding algorithms that do not consider the
sampling rate of the system may have problems
achieving a required response time or may change
states (on/off) too quickly.

Jittering the Sample Rate

Voltage-Based Acquisition Methods Only

One of the problems that can occur in systems that use
the Interrupt Service Routine to trigger a new scan is
that the scans are then vulnerable to noise being
injected at a harmonic of the sampling rate. Jittering will
help to dampen high frequency noise being injected on
to the system either through radiated or conducted
noise. Figure 13 shows an example of what this can
look like.

SAMPLING EXAMPLE — BEFORE AND AFTER JITTERING THE SAMPLE RATE

“Real World” Example

.~ Normal Sensor Signal + Injected Noise ¢,
H [
i = AN
£ 2 X
b N I L
: 0 LY e AN
) B TNt
“*Normal Sensor Signal <
- “Real World” Example
itterl o
Jittering the Sample Rate g_ Y.
(AT AVAVAVAVEAVAVATAVANAVAYEY
I ¥ ¥F ¥ ¥ ¥V VYUYV Y
% SEE
el
<
The simplest solution is to change the sampling rate by EXAMPLE 1: JITTERING

a very small amount each time a sample is taken using
the Sjittering” technique. For example, if you are
scanning a sensor once every 400 ps, you may decide
to delay the reading by an extra 0-10 ys (an amount
that changes each time a sample is taken) to make
sure you are not hitting any harmonics. Although this
will technically change our sample rate, it will not
change the average sampling rate and the change you
are making is insignificant compared to the total
sampling interval.

In the example jittering implementation below
(Example 1), the Least Significant bits from our last
ADC sample are used to create the random, short
delay. The value is masked with OxOF to limit the
maximum amount of delay that is possible.

#define UINTS8
#define UINT16

(unsigned char)
(unsigned int)

void interrupt ISR()
{
if (TOIE & TOIF)
{
// Short Delay
jitter = ADRESL & OxO0F;
while (jitter--);

CVD_sService() ;

© 2010 Microchip Technology Inc.

DS01334A-page 13

AN1334

Oversampling

This is the process of using more than one acquisition
sample per “reading”. For example, in most systems,
the Interrupt Service Routine determines when a new
reading should take place. When this occurs, the
system acquires a value and saves it as the new
reading. To increase the stability of your readings, you
could have the system acquire two samples off the
same sensor by scanning it twice and then adding the
two samples together to create one sensor “reading”.

Note: ‘Sample’ is used to refer to a single scan
of a sensor using a hardware module (e.g.
ADC/CSM/CTMU). ‘Reading’ is used to
refer to a group of samples that have been
added together which are then sent as-is

to the filtering and decoding routines.

There are several reasons why this technique is helpful
to a system:

1. Sampling errors caused by impulse noise will
not affect the system as much since each
sample is only part of a full reading value. The
system effectively averages out some of the
errors during the acquisition process.

2. Samples do not have decimal values. By
allowing the system to scan multiple times per
reading, it is able to gain additional resolution on
the signal.

The benefit of this method to the effective SNR of the
system is shown in Figure 14, but it does have clear
diminishing returns that should be considered against
the requirement of time and power consumption

FIGURE 15:

FIGURE 14: OVERSAMPLING
TRADE-OFF: TIME VS. SNR
INCREASE
35 T}
& 30 . {(
o 28| ss
A
2
=z
10
5
- 100 200 300 400 500 600 700
Samples per Reading

Software Filters

Filters are algorithms that take an input signal and
output a modified version of the signal. The function it
performs is based on the type of filter it is. The
bandwidth of a filter also plays a large role in how it
performs. From a firmware perspective, the function of
the filter is defined in the code structure and operations
that are performed. The bandwidth is usually set by
constants in the implementation that determine what
number a value should be divided by, how many times
to bit-shift left or right, and what coefficient should be
used to multiply the result by.

With filters, there is a constant trade off between noise
reduction and response time delay. This trade-off can
be visualized in the bandwidth of the filter as shown in
Figure 15.

THE NOISE REDUCTION VS. RESPONSE TIME TRADE-OFF

: 3 sec
Filter Frequency Response &
S T § 23223
_ el | [T (%WWW& G S
m - 9,
3 TR et
E RN z “
@ -10 ® u:‘ v =)‘WJ L.J L,J
o pACH % 5 SNR =20
] AL
= -15 LA M
[T CARNZY N
HNe >
| vininini
L 10 <« 2
Frequency % & i | U \V/ VY
o i SNR = 39
Test: Five rapid taps on a capacitive sensor 2o
0 c
30
© o
Filter A: Improves SNR (14 > 25) B) Y R c 8
e Good response time 2 \ /\ /\ \ I g 2
= VAT g%
Filter B: Best SNR (14 > 42) Ll | T
. Slower response time SNR = 47 _g %
70

DS01334A-page 14

© 2010 Microchip Technology Inc.

AN1334

If the filter’s bandwidth is narrow, less noise will be able
to pass through, but it may take a long time for the filter
to follow the signal. On the other hand, if the filter’s
bandwidth is wide, more noise will be able to pass
through, but it will follow the signal more closely.
Combining multiple filters can allow the designer to get
the benefits of each while limiting the negative impact.

There are three types of filters that are commonly used
in mTouch sensing solution applications. More filters
could easily be added to this list and may be more
appropriate for a specific application, but these have
been chosen because most designs will be able to use
one or more of them.

The three filter types are:
1. Slew Rate Limiter

Used as the first input filter on new incoming
samples to reject impulse noise and smooth the
signal.

Implemented in the acquisition routine.
2. L-Point Running Average

Used to create a slow-updating (high time
constant) baseline (“average”) for each sensor
as a reference point during decoding. Allows the
system to track environmental changes such as
temperature and humidity.

Implemented in the filtering routine.
3. Low Pass Butterworth

Used to reject white noise on the sensor
readings while still maintaining a fast response
time (low time constant).

Implemented on the ‘reading’ variable in the
filtering routine before sending it to the decoding
algorithm.

FIR Filters vs. lIR Filters

Finite-lmpulse Response (FIR) filters take a fixed
number of previous inputs and use them to create the
next output.

Finite-Impulse Response Filter Benefits:

« Simple implementations

 Better filter stability

» Fewer concerns about integer precision
Infinite-lmpulse Response (lIR) filters take the input

and use it in combination with the previous output of the
filter to determine the next filter output.

Infinite-Impulse Response Filter Benefits:

* Low memory requirements
* Low processing requirements

Ultimately, both filter types can be useful to an
application. For capacitive touch systems, IIR filters
can be used for slowly-updating environmental
baselines. The filter should be designed so that it can
handle impulse noise without becoming unstable. FIR
filters can be used for quickly-updating sensor
variables like the reading.

Filter: Slew Rate Limiter

The Slew Rate Limiter (SRL) filter’s main design goal is
to reject impulse noise from sensors’ readings. Unlike
the other two filters described in this section,
implementing the SRL filter requires a specific
scanning technique that will possibly change the
sample rate of your design.

The concept of the SRL filter is simple. The PIC device
is maintaining a “current reading” variable for each
sensor. In most systems, when a new sensor reading is
created, the “current reading” variable is replaced by
the new value. In an SRL filtered system, when a new
reading value is generated, the “current reading” value
is then either decremented or incremented by 1 based
on whether the latest reading is higher or lower than the
“current reading” variable. For example, if a sensor’s
current reading is 200 and the next acquisition results
in a value of 300, the system will update the “current
reading” to 201. In order for the system to reach a
current reading of 300, the next 99 scans must be
higher than the current reading.

This behavior is very beneficial because it limits the
influence of each sample. If impulse noise is affecting
the system, a single impulse-noise-affected reading will
only cause 1 bit of noise on the reading variable. On the
other hand, because you are updating the current
reading variable so slowly, you need to update the rate
of the samples. When a user presses on a sensor, the
current reading variable needs to be able to move with
the finger’s capacitance at a fast rate. There is also no
need to access the decoding function of the system
after each individual reading since it can only shift by 1
each time.

There will be several parts to the SRL filter
implementation to take care of these special
requirements. First, the system will scan based on a
timer’s interrupt at a fast rate. After each of these
scans, it will run the SRL filter to increment/decrement
the “current reading” variable. After the Nth sample, a
flag is set that allows the decode function to run. An
example code implementation of this filter can be seen
below in Example 2.

© 2010 Microchip Technology Inc.

DS01334A-page 15

AN1334

EXAMPLE 2: SLEW RATE LIMITER
FILTER
#define SCANS PER DECODE 100

UINT16 reading;
UINT16 counter;

void main (void)
{
// Main Loop
while (1)
{
if (counter >= SCANS PER DECODE)
{
mTouch_decode () ;
counter = 0;

}

void interrupt ISR (void)

{
UINT16 newReading;

if (IMROIE && TMROIF)

{
// Take a reading and store the value
newReading = mTouch getReading();

// Initialize the reading if starting
if (reading == 0) reading = newReading;

// Slew Rate Limiter

if (newReading > reading) reading++;
else reading--;
counter++;

The benefits of this filter can be seen in Figure 16. The
impulse noise on the system has been rejected and the
signal is now more easily decoded.

FIGURE 16: SLEW RATE LIMITER
FILTER BEHAVIOR

Raw Output

Slew Rate Limiter

Sensor Signal

I i

Sensor Signal

1

Frequency of Injected Noise %

2
Q
* ; %
% Conducted / Radiated A

Care should be taken to make sure the SRL filter is not
moving too slowly. If the sampling rate is too low, the
current reading value will not update fast enough and
can cause problems with response times. An example
of what this too-slow behavior will look like is shown in
Figure 17.

FIGURE 17: EXCESSIVELY SLOW SLEW
RATE LIMITER FILTER
EXAMPLE
g ™\ Slow SRL Output
£ N/
- o/
§ Raw Data l\,‘
£ %yl A
[\
= A
-l hamuiasiian | i S
3 . E!ﬂﬁf
&
User's Press I I
Press Release
— - Response Time Delay
System Response | I
Press Release
Detected Detected

To solve this issue, either:

1. Reduce the amount of time between timer
interrupts.

2. Change the increment/decrement amount to a
value larger than 1. However, the larger this
value is, the less the filter will be able to reject
impulse noise.

Calculating the Minimum Sampling Rate
in a Slew Rate Limited System

The system needs to be able to transition from its
average, unpressed sensor value to the sensor’s
threshold in the required response time. That leads to
the creation of Equation 4(a) below, with the example
behavior shown in Figure 18(a).

EQUATION 4(A): MINIMUM SAMPLING
FREQUENCY (BASIC)

fs min ~ ¢t p
r max
Where:
fs min is the minimum sampling frequency
Ty is the absolute value of the relative
(to the baseline) press threshold
t, is the required response time
Nmax is the maximum step size of the

SRL filter after one sample

DS01334A-page 16

© 2010 Microchip Technology Inc.

AN1334

FIGURE 18(A): FIXED INTERVAL DECODE
FUNCTION CALLS

A Fixed Interval
e ————

400 __\f Hy
(o)) Ty=20
£ }
S 4T,
15]

o
Samples :
360_|||||||||||!.|||||i||||||||||| -.;“P
') —
o Respons:'s 3‘3’0{2
% Delay %

Calculating the minimum sample frequency with a
system that implements debouncing is also simple. The
previous result can be multiplied by the debounce
requirement to determine how fast the system must
sample to make sure a press can be detected in the
given response time, as shown in Equation 4(b).

EQUATION 4(B): MINIMUM SAMPLING
FREQUENCY (DECODE
AFTER FIXED NUMBER OF
SAMPLES)

T
foo. = * debounce
smin ¢ p m
r'max

ax

fs min is the minimum sampling
frequency

Ty is the absolute value of the
relative (to the baseline) press
threshold

t, is the required response time

Nmax is the maximum step size of the
SRL filter after one sample

debouncep,,y is the maximum required
debounce count to change
states

Because the speed of the SRL filter is defined to be
Ty Inmax. if the press occurs asynchronously with the
decode function calls, it will not be past the threshold
by the time the next decode function call is per-
formed. So there will be a system delay while waiting
for the next call.

However, we know that we are, at minimum, going to
call the decode function once while the shift is occur-
ring or we will call it right as the threshold is reached.
Instead of calling the decode function every Ty, /npax
samples, the counter value can be calculated each

time to determine the minimum number of steps that
would be required to cross the threshold given the cur-
rent reading value. This decode counter calculation is
shown in Equation 5 and an example of its behavior is
shown in Figure 18(b).

EQUATION 4(C): MINIMUM SAMPLING
FREQUENCY (DECODE
SELECTIVELY)

T,
1 v
fs min t_(n +Nminj

rN"max

Where:

fsmin IS the minimum sampling frequency

Ty is the absolute value of the relative (to
the baseline) press threshold

t, is the required response time

Nmax IS the maximum step size of the SRL
filter after one sample

Nmin is the minimum number of samples per
decode function call

FIGURE 18(B): SELECTIVE DECODE
FUNCTION CALLS

A Decode Selectively
s
400 — <. Co 2]
Shorter
o response
c delay
©
@ fommee= B O S T
@
o
SamEIing
360_||||||||||||||||||=||||||||| s,
“Q{. “Q{? \;\v«,}(‘
fs;%, é;é;’% n%’

It is important to be careful when calling the decode
function at non-fixed intervals. If the system is using a
secondary filter in later stages for the sake of decoding
real-time motion, the amount of time that elapses
between decode function calls will change. This means
that the secondary filter will need to be updated with
care.

Equation 4(c) shows how to calculate the minimum
sampling rate for a system that has the same required
response time as before, but now is able to call the
decode function selectively.

© 2010 Microchip Technology Inc.

DS01334A-page 17

AN1334

EQUATION 5: DECODE FUNCTION CALL
COUNTER CALCULATION

reading—T
DecodeCounter = |—gp| +2
nmax
Where:
reading s the current reading value
Tp is absolute press threshold
Nmax is the maximum step size of the
SRL filter after one sample

Filter: L-Point Running Averages

This filtering technique is used in a vast number of
applications and has been documented thoroughly. Its
behavior is defined in Equation 6. The current value,
x[n], is averaged with the last L-1 values. When
deciding on a value for L, keep in mind the division
operation. If a power of 2 is chosen for the value of L,
the division operation can be simplified to a series of
bit-shifts, reducing the complexity of the filter.

EQUATION 6: L-POINT RUNNING
AVERAGE (FIR)

ylnl = x[n—k]
Where:

y[n] is the output at time 'n’

x[n] is the input at time 'n’

L is the memory of the filter
k is a counter variable

An example code implementation of the above filter
can be seen in Example 3.

EXAMPLE 3: FIR L-POINT AVERAGE

FILTER
#define HISTORY 8 /] T

#define UINT8 (unsigned char)
#define UINT16 (unsigned int)

UINT16 reading[HISTORY];
UINTS8 index;

UINT16 FIR Average (UINT16 newReading)
{

UINTS8 i;

UINT16 average = 0;

// Replace oldest reading
reading[index] = newReading;

// Sum all reading values
for (1 = 0; 1 < HISTORY; i++)
{

average += reading[i];

}

// Divide by the history window size

// NOTE: This operation is simple and fast
// as long as HISTORY is a power of 2.
average = (UINT16) (average/HISTORY) ;

// Update index for next function call
index++;
if (index >= HISTORY)
{
index = 0;

}

return average;

Also notice that, as implemented in Equation 6, this is
an FIR filter which means that a single reading can only
affect the output for a specific number of samples, L.
After this period, the sample no longer has an influence
on the system’s behavior. For noise-injected situations,
this is a very beneficial characteristic for our filters to
have. However, the memory cost of this filter will make
any filters with a large window difficult to implement.

To solve this limitation of the filter, its behavior can be
changed from FIR to IIR as shown in Equation 7. This
creates a fixed, low memory cost for the filter but
degrades some of its features. The IIR version of the
L-Point Running Average will become more distorted
from the original as L gets larger.

EQUATION 7: L-POINT RUNNING
AVERAGE ESTIMATE (lIR)

y[n1=y[n—1]+w

An example code implementation of the above filter
can be seen below in Example 4.

DS01334A-page 18

© 2010 Microchip Technology Inc.

AN1334

IR L-POINT AVERAGE
FILTER

#define HISTORY 8 // 'L'
#define UINT8 (unsigned char)
#define UINT16 (unsigned int)

EXAMPLE 4:

UINT16 average;

UINT16 IIR Average (UINT16 newReading)

{
// Update Average
average -= (UINT16) (average/HISTORY) ;
average += newReading;

// NOTE:
// This filter implementation has a gain
// of '"HISTORY'. For that reason, we must

// either divide the average by HISTORY
// or multiply the reading by HISTORY
// before we are able to compare them.
return (UINT16) (average/HISTORY) ;

}

Figure 19 shows the difference between the FIR
L-point running average and the IIR L-point running
average estimation. Notice that the estimation
introduces a response time delay in the system. For
this reason, it is not recommended to use this filter
directly on the reading signal. However, the time delay
of this filter is not a problem for the baseline calculation.
Since the baseline should be moving very slowly, the
time delay will not affect its behavior negatively.
FIGURE 19: FIR VS. IIR RUNNING
AVERAGES

~* FIR L-Point Average (L = 16)

n\amﬁf’“

AVAVAI
AA'R'S

IIR L-Point Average (L = 16)

L-Point Averages’ Filter Outputs

Time

Filter: Low Pass Butterworth

This filter implementation is an alternative to the L-point
running average. While both are low pass filters, the
digital low pass filter in this section is based on the
digital implementation of a Butterworth filter and can be
seen defined in Equation 8. Notice that the only
complex operation in this filter is the multiplication
between K and the previous output of the filter. If K is
chosen wisely, this filter can be easily implemented
with the use of bit-shifts.

EQUATION 8: DIGITAL BUTTERWORTH
LOW PASS FILTER

y[n] = x[n]+x[n-1]1+Ay[n-1]
Where:
y[n] is the output at time 'n’
x[n] is the input at time 'n’
A s the filter’s coefficient (0 <A < 1)

Smart values for Ainclude: 0.8125,0.8750,0.9375,
and 0.9688, to name a few. These can be
implemented easily using only bit-shift operations on
the y[n-1] value. An example of this can be seen
below:

LOW PASS
BUTTERWORTH FILTER

(unsigned char)
(unsigned int)

EXAMPLE 5:

#define UINTS
#define UINT16
#define FILTER GAIN 3

typedef struct
{

UINT16 y;

UINT1l6 x;
} FILTER;
FILTER filter [NUMﬁBTTNS];
UINT16 LP Butterworth (UINT16 reading)
{

// Pointer to the correct filter

// variables for our sensor...

FILTER* h = &filter[index];

// Temporary variables
UINT16 x1, yl, ayl;
UINT16 tempO0, templ;

// Populate temporary variables
xl = (h -> x);
yl = (h > y);

// Calculate: (a * y[1])
// Where, a = 0.8125.

temp0 =yl >> 2;
templ =yl >> 4;
ayl = yl - temp0 + templ;

// 1st Order Filter Equation:
// y1 = x[0] + x[1] + (a * y[1])
yl = reading + x1 + ayl;

// Store values for next time
(h > vy) = vyl;
(h -> x) = reading;

// Return the filter's new result
return yl >> FILTER GAIN;

© 2010 Microchip Technology Inc.

DS01334A-page 19

AN1334

EQUATION 9: CALCULATING FOR ‘A’

-]

Ay[n—l]=y[n—l](l—‘11+11—6)

Ay[n—-1]= y[n-

Ay[n—1]= 0.8125y[n—1]

A = 0.8125

As the value of ‘A’ gets closer to 1, the cutoff frequency
of the Butterworth low pass filter approaches zero. This
increases the effectiveness of the filter, but will slightly

FIGURE 20:

increase the filter’s settling time. Also, as ‘A’ gets closer
to 1, the integer value of y[n] will increase quickly.
This puts an upper limit on the value of ‘A’ if you want
to continue representing each sensor’s signal with the
typical 16-bit integer value.

The benefit of this type of filter when compared with the
L-point running average can be seen in Figure 20. The
increase in the effective SNR of the sensor is much
higher when implementing the Butterworth than the
running average; however, the running average
estimate is very inexpensive to implement and
performs the job well as a filter for the sensor’s
baseline.

LOW PASS BUTTERWORTH FILTER VS. L-POINT RUNNING AVERAGE

Low Pass Butterworth

IIR L-Point Running Average

H f ftrease B Mo e
§ i i
1TNY TANINENLY,
2 VYA WYY

: | INA

I VAVAVAYATA

o e W WV Y Y

Setting Thresholds

After the sensor signal has been read and filtered, the
decoding process should begin. During this step, the
sensor's signal will be compared against a
pre-determined threshold to decide if there is a press.

When establishing a threshold, there are two main
options: setting a fixed threshold or calculating the
threshold at run-time. Setting a fixed threshold is the
easiest and least time/memory intensive, but it may not
work in every situation. For mass production systems,
it is possible there will be slight differences in the
sensor’s default values across boards. If the
application is using a fixed threshold, there is a
possibility that the threshold may not work for all of
them. Calculating the threshold at run-time is the other
option. When this is implemented, the system will take
several readings on power-up and will determine where
the threshold should be set based on the system’s

samples. For the majority of applications, a calculated
threshold will not significantly affect the system’s
behavior and is preferred for its flexibility.

In some cases, two thresholds may be used in the
same way as hysteresis — one used to enter the
pressed state and one used to enter the released state.
A diagram showing this behavior is seen in Figure 21.

DS01334A-page 20

© 2010 Microchip Technology Inc.

AN1334

FIGURE 21: THRESHOLD HYSTERESIS

BEHAVIOR

Sensor Reading

Release Threshold

Press Threshold i

Sensor enters
‘Released’ state

User’s Press I (Press) I (Release)

Sensor enters
‘Pressed’ state

FIGURE 22:

Choosing where to place the thresholds for a system
can be one of the most important and difficult tasks of
getting a robust solution working. Assuming the
sensor’s signal moves down when pressed, if the
threshold is too high, false triggers can become a risk.
If the threshold is too low, the system may be unable to
detect a press in all situations. It is important to
remember that your system will be used by a wide
variety of people. People with big hands will cause
more of a shift than those with small hands. Make sure
you are setting the thresholds and testing them with a
cross-section of individuals so that everyone will be
able to activate the sensor.

SENSOR SIGNAL VS. TIME AND FREQUENCY OF RESULT

Example of a “Large” Finger Press Example of a “Small” Finger Press
o MR S - AN bR
o Threshold || | Threshold
* . e
| N =

Envelope Detector

The Envelope Detector is a decoding technique that
uses an extra variable to track the average deviation
from the sensor’s baseline (or “average”). This can be
particularly effective in systems that experience a large
amount of injected noise. Figure 23 illustrates an
example of a system that would benefit from this
decoding technique.

FIGURE 23: ENVELOPE EXAMPLE
DURING HIGH INJECTED
NOISE
g, Raw Qutput N Envelop
7] A
'g- K \\;\
‘g AN
|'|||||I | |' I'II || ww\w
S Baseline

When a high level of injected noise is present on
capacitive touch sensors, press detection can be
difficult if the decoding algorithm is only looking for a
shift in sample values. Some frequencies of noise may
cause the press behavior shown in Figure 23. When
this occurs, an envelope can be created to track the
noise level of the system and this can be used with a
threshold to make press decisions. An example
implementation of this decoding technique has been
provided in Example 6.

© 2010 Microchip Technology Inc.

DS01334A-page 21

AN1334

EXAMPLE 6: ENVELOPE DETECTOR

#define INT16 (signed int)
#define UINT16 (unsigned int)

#define UPDATE_SPEED 4
// Fastest-Slowest
// 2, 4, 8, 16, 32

UINT16 envelope;
UINT16 reading;
UINT16 average;

UINT16 Update Envelope Detector (void)
{
INT16 delta;

// Delta = | Average - Reading |
delta = average - reading;
if (delta < 0)
{
delta = -delta;
}

// Update envelope
envelope -= (UINT16) (envelope/UPDATE SPEED) ;
envelope += (UINT16) (delta);

return envelope;

}

Keep in mind while implementing this technique that
the delta value is the absolute value of the difference
between the current sensor reading and the average.
This means that shifts in both the positive and negative
direction will cause the envelope to increase. If this
behavior is not desirable for your system, the absolute
value section of the code example can be removed. For
more information about the envelope detector
decoding algorithm, see application note, AN1317,
"mTouch™ Conducted Noise Immunity Techniques for
the CTMU".

COMMON CHALLENGES

There are several behaviors of capacitive touch
systems that commonly appear. In this section, the
main issues seen in these applications will be
discussed and the different possible solutions
described that can be used.

The challenges and solutions covered in this section
are:

» Crosstalk

* Impulse Noise

* Unresponsive Buttons

* Flickering Buttons

* Reversed Operation

Common Challenges: Crosstalk

Crosstalk is the undesired shift of a sensor when an
adjacent sensor is pressed. It is mainly a side effect of
placing sensors too close together, but can be also
significantly affected based on the thickness and
relative permittivity of the covering material.

Best Option: Increase the amount of separation
between sensors. See Section “Hardware Design
Consideration #1” for all available options.

If possible, reducing the amount of crosstalk using
hardware design techniques is preferred to the
software adjustments that can be made. Crosstalk will
also become more of a problem in systems with thick
covers, so reducing the thickness may also be a
required step. For more information on the causes of
crosstalk and the hardware changes you can make to
reduce this effect, see Section “Hardware Design
Consideration #1”.

Option 2: Adjust the Thresholds

If these hardware solutions are not adequate or cannot
be used by your specific application, adjusting the
software may be your only solution. Changing the
threshold by increasing the amount of shift required to
detect a press might be the best option if the system
has more sensitivity than needed. By requiring that the
sensor’s readings shift more than the maximum
crosstalk shift of the system, you can eliminate the
ability of crosstalk to activate a sensor. Keep in mind
when doing this, however, that noise on the system
may increase the maximum crosstalk shift which could
cause false triggers in the future.

Option 3: Implement the “Most Pressed” Algorithm

Alternatively, the system can be changed to compare
each sensor’s shift with the other sensors in order to
determine which one is “most pressed.” Implementing
this algorithm will limit your system’s capabilities. First,
the system will only be able to support one press at a
time since only the highest shift sensor is always
picked. To minimize the effect of this limitation, only
compare nearby sensors to each other. The second
limitation this algorithm places on a design is on
response time. The extra execution time required by
the processor and the requirement that all sensors
must be scanned before the decoding process can
begin will both slow the system down. Depending on
the application, this may or may not be an acceptable
design trade-off.

DS01334A-page 22

© 2010 Microchip Technology Inc.

AN1334

Common Challenges: Impulse Noise

Impulse noise appears as individual or small groups of
readings that behave in a significantly different manner
than the readings before and after them due to a noise
source and not a finger's press. These spikes can
quickly destabilize a system if not handled correctly.
Additionally, if noise spikes are a common problem for
the system, they can also lower the effective SNR.

Software filters are usually the easiest method for
removing this problem. The key is to adjust the filter to
reduce the affect of the spikes, but not affect the
response time of the system. For example, if the
decision is made to take the average and just slow it
down to minimize the impact a single reading can have,
it will reduce the noise spikes in the system. However,
it will also slow down the response time since reliance
is now on a much slower average.

Best Solution: Implement the Slew Rate Limiter filter.

Infinite Impulse Response (lIR) filters are not going to
be as effective as Finite Impulse Response (FIR) filters
will be in this case. Since IIR filters allow one reading to
affect the signal for a (theoretically) infinite period of
time into the future, the effect of a noise spike could
cause the filter to become unstable. The best option in
this case is to use the Slew Rate Limiter filter described
in the software section of this application note.
Because of its design, it will eliminate all impulse noise
from the system with a minimal impact on the overall
system.

Common Challenges: Unresponsive
Buttons

Unresponsive buttons are sensors that will not change
state when a finger is placed on them. The two main
software features that will affect your sensors to
possibly make them unresponsive are thresholds and
debounce values. Sensor sensitivity can change as
noise is injected on a system. This change can reduce
the sensitivity to the point that the threshold is no longer
crossed. Increased noise on the system will increase
the probability of a single sensor reading falling outside
of the acceptable range to change state. If the
maximum debounce value is high and the noise is high,
it is possible the sensor will never respond.

There are several things that can be done to fix this
problem in a system.

Best Solution: Adjust the Thresholds

First, the threshold can be made easier to cross by
modifying the software. When noise reduces the
sensitivity of the system, the easier threshold will
decrease the possibility of an unresponsive button.
This may not be a solution if making the threshold
easier to cross will introduce false triggers into the
system. The best way to make sure there is plenty of

sensitivity to work with in this situation is to follow the
hardware design guidelines described in this
application note.

Option 2: Check Both Directions for Shifts

Another possibility is that the system is being injected
with a specific amount of noise that has caused it to
reverse its press behavior. When this happens,
pressing on the sensor will cause a shift in the opposite
direction as expected. The solution to this problem is to
place the threshold on both sides of the readings. This
may not be an option, however. In some systems, the
direction of a shift indicates a specific event. For
example, in some water-resistant systems a shift in one
direction is a press while a shift in another direction
indicates the presence of water. Implementing a
shift-check in both directions would eliminate the water
resistance of the application.

Option 3: Use Hardwatre to Increase Sensitivity

Finally, if adjusting the thresholds does not solve the
problem, hardware changes may need to be made to
increase your system’s base sensitivity. First, make
sure the application is following all of the design
guidelines. The next step is to begin increasing sensor
area, decreasing crosstalk through sensor separation,
decreasing the cover thickness, or changing its
material. All of these suggestions can be traced back to
their origins in Equation 2 which defines the
relationship between capacitance and hardware
design.

Common Challenges: Flickering Buttons

The term “flickering button” refers to a sensor that will
rapidly toggle its state while a finger is present. This is
distinctly separate from a false trigger, which is a
sensor changing state while there is no finger.
Flickering buttons are caused in the same way as
unresponsive sensors. As noise is injected on a sensor,
the sensitivity of the sensor can change. If the
sensitivity is reduced to the point that it approaches the
threshold, noise can sometime cause the readings to
jump above and below it. This will result in the sensor
rapidly changing states.

Best Solution: Implement Threshold Hysteresis

The best and most effective solution to this problem is
to adjust your algorithm so that it implements a large
hysteresis on the thresholds. Separate press and
release thresholds will be able to tolerate a much larger
amount of system noise. If sensitivity levels are high,
the thresholds will be able to be placed further apart,
increasing the noise resistance of the system. Similarly,
as the thresholds are placed closer together, the
system begins to return to its single-threshold behavior
and can once again experience flickering buttons. For
these reasons, a combination of hysteresis and
debouncing should be the default solution to this
problem in applications.

© 2010 Microchip Technology Inc.

DS01334A-page 23

AN1334

Option 2: Increase the Debounce Requirement

The easiest way to reduce this problem is to increase
the maximum debounce value, but this method can
have mixed results. Increasing the debounce count will
decrease the response time of the system and will only
decrease the probability of flickering. The smaller
probability of flickering will translate to a slower flicker,
but most likely not the complete elimination of it.

Option 3: Adjust the Thresholds

A third option is to make the threshold easier to cross
or to increase the sensitivity of the system through
hardware changes. However, if there is a large amount
of noise on the system, this still may not be enough by
itself to solve the problem.

FIGURE 24:

Common Challenges: Reversed
Operation

Reversed operation can occur in systems with a high
amount of injected noise. The noise can cause the
system to shift in the opposite direction as the no-noise
behavior. If the system was shifting down on each
press, it is now shifting up. This can be a problem in
systems that only look for a shift in one direction.
Figure 24 shows how a system looking for a “down”
shift can enter a reversed operation state if an “up” shift
occurs. There are two main ways of solving this
problem. The baseline’s speed can be decreased and
thresholds can be placed on both sides of the baseline.

ENTERING REVERSED OPERATION DUE TO NOISE

Sensor Reading

Threshold

User Press (Press)

I:(Release)

|

Press Detection

| {Sensor is pressed) I

(PresI) i i
I_

Best Solution: Check Both Directions for Shifts

The more robust solution to this problem is to create a
threshold on either side of the average so that a shift in
either direction will result in a detected press. Not all
systems may work well with this solution, however. For
example, in some systems designed to work in wet
conditions, a shift in one direction means a finger is
present while a shift in the other direction corresponds
to a the effect of water. In a situation such as this, it may
be wiser to ignore any shifts in the wrong direction.
Ultimately, the decision should be based on the specific
application’s requirements.

Option 1: Adjust the Filters’ Time Constants

Slowing down the baseline’s speed would require that
a longer opposite-direction-from-normal shift occur
before the system enters the reversed operation state.
This would cause unresponsive buttons when specific
types of noise are injected onto the application, but
may be the best option for a given system. Just slowing
down the average will not eliminate the problem,
however. If a user were to press on a sensor for a very
long period of time, the slow average will eventually
follow the finger and when it is finally removed,
reversed operation could still occur. This is a
performance trade-off that must be considered when

using any baseline in a system. Determining the
difference between the environment naturally shifting
the readings and a finger artificially shifting the
readings can sometimes be difficult.

Option 2: Increase the VDD of the system

While this will not eliminate the problem, raising VDD
will fight against the reversing behavior by increasing
the amount of noise that must be injected on the
system before it flips. This option is placed last
because increasing VDD results in a higher current
consumption for the system.

DS01334A-page 24

© 2010 Microchip Technology Inc.

AN1334

CONCLUSION

Good hardware design choices are the foundation to a
robust capacitive touch design. By following the
provided design guidelines, your custom application
will have a high base signal-to-noise ratio (SNR) which
will decrease your required software overhead, speed
up your system’s overall response time, and allow your
system to perform well even in noisy conditions.

Although there are many opportunities to adjust a
design to meet a specific application’s needs, the best
design choices for a robust system are:

1. The sensor size should be the same as an
average user’s finger press (15x15 mm)

2. Sensors should be separated as much as
possible. Ideal minimum separation is 2-3 times
the cover’s thickness.

3. Keep the cover as thin as possible. Ideally the
cover thickness should not exceed 3 mm to
maximize sensitivity.

4. Use ground planes to your advantage to

minimize radiated and conducted noise, but be

careful of reducing sensitivity.

Keep sensor traces thin and short.

Always use an appropriate adhesive.

Add series resistors to the sensor traces.

Keep VDD as high as possible to maximize noise

immunity.

® N oo

Strategic use of acquisition techniques such as jittering
the sample rate and implementing a slew rate limiter
will reduce the amount of noise that is introduced
through the readings. Digital filters such as the L-Point
Running Average and the low pass Butterworth filter
allow the system to track environmental changes and
further increase the SNR of the signal. Finally, specific
algorithm implementations such as threshold
hysteresis, debouncing, and the “most pressed”
algorithm will allow the system to react to even the
most rare of noise disturbances.

From start to finish, capacitive touch systems should be
developed with the key focus of increasing the SNR of
the sensors’ signal. Changing from a digital,
mechanical switch to an analog, capacitive sensor is
not a one-step process, but following the given
hardware suggestions and implementing the provided
software algorithms will make the system both cost
effective and robust.

For information on the basics of mTouch sensing and
other more advanced topics, visit the Microchip web
site at http://www.microchip.com/mTouch.

© 2010 Microchip Technology Inc.

DS01334A-page 25

AN1334

GLOSSARY OF TERMS

Average

A value calculated in real time by the system’s firmware
to estimate what the next reading of the sensor should
be assuming no external interference.

Base SNR

The signal-to-noise ratio of the unfiltered sensor signal.
Baseline

See ‘Average’. These two terms are used
interchangeably.

Cover

A layer of typically plastic or glass that is placed
between the application’s PCB and the user’s finger.
Crosstalk

The undesired shift of a neighboring sensor’s readings
when the user is pressing on a different sensor.

CSM (“Capacitive Sensing Module”)

An mTouch™ sensing solution hardware module used
to measure the capacitive shift of a sensor using a
frequency-based method. A timer module is used to
count the number of oscillations the sensor’s signal
performs in a fixed amount of time.

CTMU (“Charge Time Measurement Unit”)

An mTouch™ sensing solution hardware module
available in some PIC18 and PIC24 devices that uses a
voltage-based acquisition method to measure the
capacitance of a sensor.

CVD (“Capacitive Voltage Divider”)

An mTouch™ sensing solution acquisition technique
that uses a PIC MCUs ADC module to take a
voltage-based capacitive measurement of a sensor.
Debounce

Algorithm process that requires the same answer be
independently calculated N times in a row before a state
change can occur.

Decoding

The algorithm process of taking an analog integer value
and using it to determine the current state of the sensor.
False Triggers

Incorrect sensor state transitions that are not caused by
a finger’s press. Do not confuse these with ‘Flickering
Buttons’ which occur when a finger is present.
Flickering Buttons

The sensor behavior of quickly toggling between sensor
states while a finger remains pressed on the sensor. Do
not confuse these with ‘False Triggers’ which occur
when a finger is not present.

Hysteresis

A control theory technique that uses several signal
thresholds to eliminate or reduce fast state toggling
while the signal is transitioning.

Noise

The unwanted jitter of a signal usually caused by an
external source.

Noise Immunity

The ability to remove or ignore the noise on a sensor’s
signal.

Noise Spikes

Individual or small groups of readings that behave in a
significantly different manner than the readings before
and after them due to a noise source and not a finger’s
press.

Oversampling

Taking more than one sample of a sensor’s signal and
combining them into one final reading that is then
processed by the firmware’s algorithm.

Parasitic Capacitance

The unwanted capacitance that exists between two
elements of a circuit simply because of their proximity to
each other.

Permittivity

A measure of how much resistance is encountered
when forming an electric field through a material. Higher
permittivity values mean less resistance.

Reading

The analog integer value that represents the sensor’s
current value and that is passed to the filtering or
decoding algorithms. Not to be confused with ‘Sample’.

Reversed Operation

A phenomenon caused by a large amount of noise on
the system which reverses the operation of the sensor.
Pressing makes the sensor think it has been released
and releasing makes the sensor think it has been
pressed.

Sample

A single result from a hardware module that describes
the sensor’s current value. Multiple samples might be
combined using the ‘Oversampling’ technique to create
a ‘Reading’ which is then used in the algorithms
calculations.

Sensitivity

A measure of how much a sensor’s value will shift when
a finger is pressed on it. The shift is sometimes defined
in terms of the percentage of the total value, and
sometimes as the absolute shift amount.
Signal-to-Noise Ratio (SNR)

A measure of how much sensitivity a system has
compared to the level of noise on the signal. The higher
the SNR, the cleaner the signal.

Threshold

A limit used to define at what point a sensor should
change states.

DS01334A-page 26

© 2010 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

=—150/TS 16949:2002 —

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KeeLoaq, KeeLoa logo, MPLAB, PIC, PICmicro, PICSTART,
PIC32 logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICKkit,
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,
TSHARC, UniWinDriver, WiperLock and ZENA are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2010, Microchip Technology Incorporated, Printed in the
U.S.A,, All Rights Reserved.

Q Printed on recycled paper.

ISBN: 978-1-60932-435-3

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

© 2010 Microchip Technology Inc.

DS01334A-page 27

MICROCHIP

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Farmington Hills, Ml
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo

Kokomo, IN

Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara

Santa Clara, CA

Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada

Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong

Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing

Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hong Kong SAR
Tel: 852-2401-1200

Fax: 852-2401-3431
China - Nanjing

Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao

Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian

Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore

Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370

Taiwan - Kaohsiung
Tel: 886-7-213-7830
Fax: 886-7-330-9305
Taiwan - Taipei

Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828

Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham

Tel: 44-118-921-5869
Fax: 44-118-921-5820

07/15/10

DS01334A-page 28

© 2010 Microchip Technology Inc.

	Introduction
	Basic Capacitive Touch Review
	FIGURE 1: mTouch™ Sensing Acquisition Methods’ Waveforms

	Noise Immunity vs. Low Power

	Effects of Noise on Capacitive Touch Sensors
	Mechanical Buttons vs. Capacitive Sensors
	FIGURE 2(a): Mechanical Button vs. Capacitive Touch Sensor Software Process
	FIGURE 2(b): Mechanical Button vs. Capacitive Touch Sensor Signal Noise Behavior

	Conducted and Radiated Noise
	FIGURE 3: Voltage-Based Harmonic Acquisition Example
	FIGURE 4: Example Voltage-Based-Acquisition Noise Behavior

	Signal-to-Noise Ratio
	EQUATION 1: Signal-to-Noise Ratio
	FIGURE 5: Example SNR Calculation
	FIGURE 6: Example: Signal-to-Noise Ratio = 1.0

	Hardware Design
	The Basic Capacitance Equation
	EQUATION 2: Capacitance / Sensitivity
	EQUATION 3: Total Capacitance
	FIGURE 7: Diagram Showing CF and CP

	Hardware Design Consideration #1
	Selecting a Sensor Size

	Hardware Design Consideration #2
	Determining the Sensors’ Separation
	FIGURE 8(a): Diagram of Finger-to-Sensor Coupling
	FIGURE 8(b): Capacitive Sensor Field Lines
	FIGURE 8(c): Diagram of Field Lines showing Sensor-to-Sensor Crosstalk
	FIGURE 8(d): Diagram of Crosstalk in a Slotted Cover System

	Hardware Design Consideration #3
	Covering Material Thickness
	FIGURE 9: Relationship between Cover Thickness and Sensitivity

	Hardware Design Consideration #4
	Using Ground Planes to Your Advantage
	FIGURE 10: Cross-Sectional Diagram of Grounding Techniques to Design for High Sensitivity or High Noise Immunity

	Hardware Design Consideration #5
	Designing the Sensors’ Layout

	Hardware Design Consideration #6
	Selecting an Adhesive

	Hardware Design Consideration #7
	Using Series Resistance on Sensors
	FIGURE 11: Effect of a Series Resistor on the Stability of a Sensor’s Readings

	Hardware Design Consideration #8
	Choosing Vdd to Maximize Noise Immunity
	FIGURE 12: Reverse shift behavior when injecting conducted noise on a voltage-based acquisition system

	Software Techniques
	Consider Your System Requirements
	Sampling Rates
	Jittering the Sample Rate
	FIGURE 13: Sampling Example – Before and After Jittering the Sample Rate
	EXAMPLE 1: Jittering

	Oversampling
	FIGURE 14: Oversampling Trade-Off: Time vs. SNR Increase

	Software Filters
	FIGURE 15: The Noise Reduction vs. Response Time Trade-Off

	FIR Filters vs. IIR Filters
	Filter: Slew Rate Limiter
	EXAMPLE 2: Slew Rate Limiter Filter
	FIGURE 16: Slew Rate Limiter Filter Behavior
	FIGURE 17: Excessively Slow Slew Rate Limiter Filter Example

	Calculating the Minimum Sampling Rate in a Slew Rate Limited System
	EQUATION 4(a): Minimum Sampling Frequency (Basic)
	FIGURE 18(a): Fixed Interval Decode Function Calls
	EQUATION 4(b): Minimum Sampling Frequency (Decode after Fixed Number of Samples)
	EQUATION 4(c): Minimum Sampling Frequency (Decode Selectively)

	FIGURE 18(b): Selective Decode Function Calls
	EQUATION 5: Decode Function Call Counter Calculation

	Filter: L-Point Running Averages
	EQUATION 6: L-Point Running Average (FIR)
	EXAMPLE 3: FIR L-Point Average Filter
	EQUATION 7: L-Point Running Average Estimate (IIR)
	EXAMPLE 4: IIR L-Point Average Filter
	FIGURE 19: FIR vs. IIR Running Averages

	Filter: Low Pass Butterworth
	EQUATION 8: Digital Butterworth Low Pass Filter
	EXAMPLE 5: Low Pass Butterworth Filter
	EQUATION 9: Calculating for ‘A’
	FIGURE 20: Low Pass Butterworth Filter vs. L-Point Running Average

	Setting Thresholds
	FIGURE 21: Threshold Hysteresis Behavior
	FIGURE 22: Sensor Signal vs. Time and Frequency of Result

	Envelope Detector
	FIGURE 23: Envelope Example during High Injected Noise
	EXAMPLE 6: Envelope Detector

	Common Challenges
	Common Challenges: Crosstalk
	Common Challenges: Impulse Noise
	Common Challenges: Unresponsive Buttons
	Common Challenges: Flickering Buttons
	Common Challenges: Reversed Operation
	FIGURE 24: Entering Reversed Operation due to Noise

	Conclusion
	Glossary of Terms
	Trademarks
	Worldwide Sales and Service

