Neural Network solution guide
NEW! Farnell solution kit to help you get started with your next innovation
Neural Network solution guide
NEW! Farnell solution kit to help you get started with your next innovation
Nearly all intelligent devices that perform computer vision, speech recognition, and signal processing tasks now use Neural Networks (NN). For the aforementioned applications, the efficiency and accuracy of Neural Networks have advanced to the point that researchers consider them to be more accurate than the conventional algorithmic approach. However, there are only a few hardware devices available that can be used to implement and deploy such Neural Network solutions at the edge for high-speed real-time analysis.
This product solution guide demonstrates the Binary Neural Network (BNN) and Quantized Neural Network (QNN) on Avnet's Ulta96-V2 using Xilinx PYNQ overlays. The users will implement image recognition applications such as Road Traffic Sign Detection and ImageNet Animal Identification using neural nets. This project explicates how to implement a hardware-based high performance acceleration model in an embedded processing AIoT edge application rather than a software implementation that has its own limitations.
What you will learn: